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Abstract
Objective. Steady-state visual evoked potential (SSVEP)-based brain-computer interfaces (BCIs)
can provide relatively easy, reliable and high speed communication. However, the performance
is still not satisfactory, especially in some users who are not able to generate strong enough
SSVEP signals. This work aims to strengthen a user’s SSVEP by alpha down-regulating
neurofeedback training (NFT) and consequently improve the performance of the user in using
SSVEP-based BCIs. Approach. An experiment with two steps was designed and conducted. The
first step was to investigate the relationship between the resting alpha activity and the SSVEP-
based BCI performance, in order to determine the training parameter for the NFT. Then in the
second step, half of the subjects with ‘low’ performance (i.e. BCI classification accuracy <80%)
were randomly assigned to a NFT group to perform a real-time NFT, and the rest half to a non-
NFT control group for comparison. Main results. The first step revealed a significant negative
correlation between the BCI performance and the individual alpha band (IAB) amplitudes in the
eyes-open resting condition in a total of 33 subjects. In the second step, it was found that during
the IAB down-regulating NFT, on average the subjects were able to successfully decrease their
IAB amplitude over training sessions. More importantly, the NFT group showed an average
increase of 16.5% in the SSVEP signal SNR (signal-to-noise ratio) and an average increase of
20.3% in the BCI classification accuracy, which was significant compared to the non-NFT
control group. Significance. These findings indicate that the alpha down-regulating NFT can be
used to improve the SSVEP signal quality and the subjects’ performance in using SSVEP-based
BCIs. It could be helpful to the SSVEP related studies and would contribute to more effective
SSVEP-based BCI applications.

Keywords: brain-computer interface (BCI), steady-state visual evoked potential (SSVEP),
neurofeedback training (NFT), individual alpha band (IAB), BCI performance

(Some figures may appear in colour only in the online journal)

1. Introduction

Although brain-computer interface (BCI) research has made
significant progress recently, most of the developed systems

Journal of Neural Engineering

J. Neural Eng. 13 (2016) 036019 (9pp) doi:10.1088/1741-2560/13/3/036019

5 Author to whom any correspondence should be addressed.
6 Both authors contributed equally to this work.

1741-2560/16/036019+09$33.00 © 2016 IOP Publishing Ltd Printed in the UK1

mailto:fwan@umac.mo
http://dx.doi.org/10.1088/1741-2560/13/3/036019
http://crossmark.crossref.org/dialog/?doi=10.1088/1741-2560/13/3/036019&domain=pdf&date_stamp=2016-05-06
http://crossmark.crossref.org/dialog/?doi=10.1088/1741-2560/13/3/036019&domain=pdf&date_stamp=2016-05-06


remain in laboratory research and demonstration stages. The
performance of the current state-of-the-art is still low and far
from the expectation. Moreover, it has been found that a
substantial percentage of subjects appear incapable of utiliz-
ing a BCI, namely the ‘BCI illiteracy’ problem. For instance,
a number of recent studies show that around 10% to 25% of
users are unable to attain effective control (Guger
et al 2003, 2009, Kelly et al 2005, Allison et al 2010a,
Allison and Neuper 2010b, Brunner et al 2010, Volo-
syak 2011, Ahn et al 2013).

To improve BCI performance, tremendous research
efforts have been made and many sound results have been
reported. However, the majority of the existing work has been
devoted to hardware and system design, signal processing and
classification algorithms. Unfortunately, successful BCI
operations depend significantly on how well the users can
voluntarily modulate their neural activity (Neuper and Pfurt-
scheller 2010) or passively produce the wanted brainwaves. If
a user is not able to generate strong enough signals that are
classifiable, even the best system design and algorithms
cannot lead to satisfactory results (Neuper and
Pfurtscheller 2010).

A different approach to enhancing the performance of
BCIs is using neurofeedback training (NFT) to strengthen the
elicited electroencephalogram (EEG) patterns. NFT refers to
an operant conditioning paradigm that helps subjects to
voluntarily modulate their brain electrical activities, wherein
the desired patterns of the brain activities are rewarded by
visual or auditory stimuli that depend on the online feedback
of the relevant components in the EEG recorded from one or
more electrodes placed on the scalp during NFT (Ver-
non 2005). The hypothesis of NFT is that through real-time
feedback of brain activity, the user learns to self-regulate his
or her own brain function in order to improve certain behavior
or cognitive performance. Numerous studies have demon-
strated positive effects of NFT on enhancement of human
cognitive and behavioral performance (Vernon 2005, Nan
et al 2012, 2013, Ros et al 2014, Gruzelier 2014) as well as in
treatment of mental disorders such as attention-deficit/
hyperactivity disorder (ADHD) (Arns et al 2014), autistic
spectrum disorder (Coben et al 2010), and major depressive
disorder (Peeters et al 2014).

In recent years, NFT has been applied to improve the
performance of various types of BCIs. Motor imagery (MI)-
based BCIs and slow cortical potential (SCP)-based BCIs first
went into consideration and later became intensively studied
due to their underlying voluntary nature in EEG pattern
generation (Neuper and Pfurtscheller 2010). Hwang et al
(2009) proposed a neurofeedback-based MI training system
which can help subjects to learn how to self-regulate the mu
rhythm during motor imagination. Blankertz et al (2010),
Grosse-Wentrup and Schölkopf (2012), and López-Larraz
et al (2013) proposed the neurofeedback protocols for the
subjects to modulate the resting state of sensorimotor rhythm
(SMR), the gamma band activity, and the upper alpha band
activity, to improve the performance in using MI-based BCIs,
respectively. For SCP-based BCIs, the subjects were asked to
learn how to control the SCP voluntarily through NFT

(Birbaumer et al 1999, Birbaumer 2006). Besides, Egner and
Gruzelier (2001) suggested enhancing the subject’s P300
amplitude during an auditory oddball task through SMR and
beta NFT.

Among various types of noninvasive BCIs, steady-state
visual evoked potential (SSVEP)-based BCIs can provide a
relatively high speed of communication. A recent benchmark
was due to Chen et al (2015), who had achieved an infor-
mation transfer rate (ITR) up to 5.32 bits per second, the
highest ITR reported in either noninvasive or invasive BCI
spellers. It left a limited room for further improvement in
SSVEP-based BCI system design and optimization. On the
other hand, the subject side appears very promising but was
little explored. Fernandez-Vargas et al (2013) designed a
closed-loop optimization protocol to improve the efficiency of
SSVEP-based BCIs, which consisted of two closed-loops,
one for selecting the most compatible stimulus frequencies
and another for an online auditory feedback of SSVEP
amplitudes. Yet the NF like effect was shadowed due to the
mixture of two closed-loops. Another relevant work from Yin
et al (2015) utilized a real-time biofeedback of SSVEP
amplitudes to increase a user’s visual selective attention on
the target stimulus, but no significant improvement in acc-
uracy was found. The authors explained the possible reason
by the variation in user’s attention since this real-time bio-
feedback mechanism may have only been helpful when the
reduction in a subject’s attention had a significant effect on
the SSVEP detection.

Unlike the research of Fernandez-Vargas et al (2013) and
Yin et al (2015) in which the SSVEP amplitude was directly
taken as the feedback parameter, this study adopted a standard
procedure to design and apply NFT to improve SSVEP-based
BCI performance. More specifically, we first investigated the
relationship between SSVEP-based BCI performance and the
brain oscillations, in order to find the key NFT parameters
including the training feature and training direction. Then we
applied the NFT to help subjects to self-regulate the selected
EEG patterns, with the SSVEP-based BCI performance
evaluated before and after the NFT. This was inspired by
some recent results especially about the prediction of SSVEP-
based BCI performance. For instance, Makeig et al (2002)
and Yeung et al (2004) pointed out that alpha band
(7.5–12.5 Hz) may play an important role in evoked poten-
tials. Zhang et al (2013) further confirmed a negative corre-
lation between the resting upper alpha amplitude and the
classification accuracy of SSVEP-based BCI.

However, the above studies utilized the fixed alpha fre-
quency band. As pointed out by Klimesch (1999), the alpha
frequency band has a large inter-individual difference and it
was suggested to adjust the frequency windows of alpha for
each subject by using the individual peak alpha frequency
(PAF) as an anchor point. On the other hand, Morgan et al
(1996) found the SSVEP response strongly correlated with
visual attention, and Plotkin (1976) showed that the attention
was negatively correlated with the occipital alpha rhythm.
Therefore, in this study we first investigated the relationship
between the resting individual alpha band (IAB) amplitude
and the SSVEP-based BCI performance described by the
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SSVEP signal-to-noise ratio (SNR) and the BCI classification
accuracy. Then we proposed to use the NFT to decrease
users’ IAB amplitude in the occipital area. The hypothesis is
that this decrease in IAB activity can lead to an increase of the
SSVEP SNR, and eventually the performance enhancement
of the users especially for whom cannot attain effective
control of SSVEP-based BCIs.

2. Materials and methods

2.1. Participants

A total of 33 healthy adults (age: 24.9 ± 3.9 years; 11
females), with normal or corrected to normal vision and no
self-reported chronic medication/substance intake/neurolo-
gical diseases such as epilepsy, participated in this study. All
subjects signed an informed consent form after the exper-
imental nature and procedure were explained to them. The
experimental protocol was in accordance with the Declaration
of Helsinki and approved by the local research ethics com-
mittee (University of Macau).

2.2. EEG signal acquisition

EEG signals were collected from standard Ag-AgCl electro-
des placed on the scalp according to the international 10–20
system. The ground was located at the forehead and the
reference was selected as the left mastoid. The impedance for
all electrodes was kept below 10 kΩ. The signals were
amplified through an amplifier (g.USBamp, Guger Technol-
ogies, Graz, Austria) with a sampling rate of 600 Hz in the
baseline recording and the SSVEP-based BCI test, and
256 Hz in the NFT part. An online bandpass filter between
0.5 Hz and 60 Hz and a 50 Hz notch filter were enabled in the
amplifier to filter the high-frequency noise, baseline drift and
power line interference.

2.3. Experimental design

2.3.1. Experimental procedure. The main objective of this
study is to apply NFT to improve a subject’s performance in
using SSVEP-based BCI which is evaluated by BCI
classification accuracy and SSVEP SNR. To this goal, there
were two steps in the experiment. In the first step (Step_1 for
short), we firstly recorded the resting baseline (Baseline_1)
and then performed the SSVEP-based BCI test (Test_1) for
33 participants. The resting baseline including 1 min of eyes-
open epoch and 1 min of eyes-closed epoch were recorded at
the electrode Oz. The objective of Step_1 was to find out the
relationship between the SSVEP-based BCI performance and
the resting alpha activity in order to determine the NFT
feature and direction.

In Step_2, 20 subjects with low classification accuracy
(i.e. classification accuracy <80%) from Step_1 were then
equally and randomly allocated to a NFT group (age: 25.5 ±
3.6 years, 4 females) and a non-NFT control group (age: 24.1
± 2.6 years, 5 females). In the NFT group, after Baseline_1

and Test_1, the subjects completed the NFT in two
consecutive days. After all training sessions, the subjects
repeated the baseline recording (Baseline_2) and the BCI test
(Test_2). To assess the effectiveness of the NFT, the non-
NFT control group went through the experiment with the
same arrangement, however, without any training sessions.

2.3.2. SSVEP-based BCI test. In the SSVEP-based BCI test,
ten frequencies between 7 and 15 (Hz), i.e. 7.05, 7.5, 8, 8.57,
9.23, 10, 10.9, 12, 13.33 and 15 (Hz) were selected as the visual
stimuli, and the SSVEP signals were recorded over the occipital
cortex of the scalp (i.e., O1, O2, Oz, PO3, PO4 and POz).

In total 50 SSVEP trials were performed in 5 sessions.
Each session consisted of 10 trials, and each trial used one
stimulus frequency selected randomly and exclusively from the
aforementioned 10 stimulus frequencies. Moreover, each trial
lasted for 7 s in which the stimulus was only flashing for 4 s
and the remaining 3 s was for a short rest to prepare for the next
trial. After each session, a break of 3 ∼ 5min was given to the
subject to relax. An LCD monitor was used as the visual
stimulator (ViewSonic 22″, 120 Hz refresh rate, 1680 × 1050
pixel resolution). A white stimulus with 120 × 120 pixels on
black background was programmed with Microsoft Visual
Studio 2010 and Microsoft DirectX SDK (June 2010). A ‘+’

symbol was shown in the center of the flashing target to
indicate the subjects where they should focus their gaze.

2.3.3. NFT. The training parameter was the relative IAB
amplitude at Oz as calculated by the following equation:
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where LTF and HTF denote the low transition frequency and
the high transition frequency of the IAB expressed in Hz, X(k)
is the frequency spectrum amplitude calculated by FFT with a
1 s sliding window that shifted every 0.125 s, Δf is the
frequency resolution of FFT and k is the spectrum index. As
shown in figure 1, the LTF and HTF for calculating IAB were
determined for each subject through the amplitude band
crossings of the eyes-open and eyes-closed baseline

Figure 1. The determination of the individual alpha band.
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recordings, and the PAF showed the largest amplitude
between the LTF and HTF in the eyes-closed condition.

For the NFT schedule, each subject performed 5 NFT
sessions each day in two consecutive days for a total of 10
training sessions, and each NFT session consisted of 3
successive 1-min trials with a 5-s interval between trials.

The feedback interface contained a sphere and a cube, as
shown in figure 2. The radius of the sphere reflected a real-
time feedback of the training parameter. If the training
parameter was below the threshold (Goal_1), the sphere
changed its colour, and its size increased as the training
parameter decreased. The height of the cube increased
whenever the feedback parameter stayed below the threshold
for more than 2 s (Goal_2). Thus, the ultimate goal for the
subjects was to elevate the cube as high as possible
(Rodrigues et al 2010). The subjects were thus expected to
apply spontaneous mental strategies to achieve the goals,
while no specific mental strategies were prescribed. They
were asked to utilize one mental strategy in a 1-min trial and
could change it in the next trial if the current one was not
successful to achieve Goal_1. After each training session, the
mental strategies used in the three trials were written down
with the effects scored by the subjects.

The feedback threshold in the first training session was
set to the mean relative IAB amplitude in the eyes-open
resting baseline. The threshold would be decreased by 0.05 in
the next session if the percentage of time that the relative IAB
amplitude stayed below the threshold exceeded 60%, or
increased by 0.05 if the percentage of time was less than 20%.

2.4. SSVEP data processing

2.4.1. SSVEP signal SNR calculation. In order to reduce the
effects of adverse interference such as muscular artifacts,
trials with EEG amplitude exceeding 100 μV were excluded
from the analysis. To minimize the effect of the background
EEG activity across subjects, the quality of SSVEP responses
was described using SNR, defined as the ratio between the
power of the stimulus frequency and the mean power of a

2 Hz frequency interval centered on the stimulus frequency
but excluding the stimulus frequency, which can be calculated
as

/å
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where K = f/Δf is the spectrum index corresponding to the
stimulus frequency f, X(K) denotes the spectrum amplitude,
and n is the number of the points in this spectrum interval
(Wang et al 2006). In the following analysis, the SSVEP SNR
of each subject was computed as the mean across the six
electrodes and the ten frequencies.

2.4.2. SSVEP-based BCI accuracy calculation. The
canonical correlation analysis (CCA), a widely used
multivariate statistical method in SSVEP-based BCIs, was
used for classification (Bin et al 2009). In addition, a 4-s time
window was chosen in CCA and for each subject the
classification accuracy was calculated from 50 trials.

3. Results

3.1. The relationship between the resting relative IAB
amplitude and the BCI performance

For the 33 subjects in Step_1, their BCI classification acc-
uracy ranged from 38% to 100% (mean = 74.91%,
SD = 16.23%) and their relative IAB amplitude at Oz in the
eyes-open resting state varied from 0.78 to 1.39
(mean = 1.046, SD = 0.168). Shapiro-Wilk test indicated that
the data were normally distributed. Thus, a 2-tailed Pearson
correlation test was employed to examine the relationship
between the relative IAB amplitude at Oz and the BCI per-
formance. As shown in figures 3(a) and (b), the relative IAB
amplitude had a significant negative correlation with the
SSVEP SNR (r = −0.423, p = 0.014) and the classification
accuracy (r = −0.579, p < 0.001).

3.2. NFT result

3.2.1. EEG changes. The relative IAB amplitude at Oz for
each subject in each session and its mean across all subjects in
the NFT group are depicted in figure 4, which presented a
decreasing trend over 10 training sessions for all subjects. A
2-tailed Pearson correlation test further found a significant
negative correlation between the mean relative IAB amplitude
and the session number (r = −0.921, p < 0.001), suggesting
that the subjects were able to decrease their alpha activity by
this training protocol.

Regarding the relative IAB amplitude at Oz during the
eyes-open resting baseline, no significant difference was
found between Baseline_1 and Baseline_2, in either the
control group (t = 0.014, p = 0.989) or the NFT group
(t = 1.661, p = 0.131).

3.2.2. BCI performance changes. The changes of all
subjects’ SSVEP-based BCI performance in the NFT and

Figure 2. Visual cue of the NFT paradigm.
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control groups are shown in figure 5. The mean SSVEP SNR
and the mean BCI classification accuracy in Test_1 and
Test_2 of both NFT and control groups are given in table 1
and depicted in figure 6. As shown in figure 5, all subjects in
the NFT group showed SSVEP SNR and BCI accuracy
improvements which cannot be found in the control group.
Independent t test found that both the SSVEP signal SNR and
the classification accuracy in Test_1 had no significant
difference between the two groups. After the NFT,
however, the NFT group showed an average increase of
16.49% in the SSVEP signal SNR and an average increase of
20.33% in the BCI classification accuracy. A paired t-test
revealed a significant improvement in the NFT group on both
the SSVEP signal SNR (t = 4.856, p = 0.001) and the BCI
classification accuracy (t = 12.249, p < 0.001), while no

significant improvement in the control group on the SSVEP
signal SNR (t = 0.762, p = 0.465) and the BCI classification
accuracy (t = 0.067, p = 0.948).

Furthermore, according to the 1-tailed Pearson correla-
tion test results, the decrease in the relative IAB amplitude
from Session 1 to 10 had a close-to-significant correlation
with the improvement in the SSVEP signal SNR (r = 0.523,
p = 0.06) and the BCI classification accuracy (r = 0.477,
p = 0.082). Additionally, in the sub-band of IAB (i.e. the
lower IAB from LTF to PAF), the relative amplitude
decrease from Session 1 to 10 showed a close-to-significant
correlation with the SSVEP signal SNR improvement
(r = 0.541, p = 0.053) and a significant correlation with
the BCI classification accuracy improvement (r = 0.583,
p = 0.039).

Figure 3. Scatterplots of the relative IAB amplitudes at Oz in the eyes-open resting state versus. (a) the SSVEP SNRs, and (b) the SSVEP-
based BCI classification accuracy. The straight lines represent the fitted trend lines.

Figure 4. The relative IAB amplitudes in each training session for 10 subjects in the NFT group (colour curves) and the mean of the relative
IAB across all subjects (black thick curve).
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4. Discussion

The relation between the resting-state EEG activities and the
potential processing abilities of the brain has been extensively

reported in the literature. Relevant to SSVEP-based BCIs,
recently Fenandez-Vargas et al (2013) found the correlation
between resting-state EEG bands and the BCI performance,
and Zhang et al (2013) further proposed the prediction of

Figure 5. The SSVEP-based BCI performance of all subjects in the NFT and the control groups: (a) the SSVEP SNR of the NFT group, (b)
the SSVEP SNR of the control group, (c) the BCI classification accuracy of the NFT group, and (d) the BCI classification accuracy of the
control group.

Table 1. The SSVEP-based BCI performance of each group.

Group Test SSVEP SNR Classification accuracy (%)

NFT Test_1 (before NFT) 2.262 ± 0.685 65.4 ± 7.2
Test_2 (after NFT) 2.635 ± 0.763 78.7 ± 6.3

Control Test_1 2.431 ± 0.674 63.4 ± 14.7
Test_2 2.378 ± 0.702 63.3 ± 14.6

Figure 6. Comparisons of the SSVEP-based BCI performance in the NFT and the control groups in terms of (a) the SSVEP SNR, and (b) the
BCI classification accuracy. (Error bar indicates the SD, * represents the significant difference, p < 0.05).
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subjects’ SSVEP-based BCI performance by the resting-state
EEG network measures.

This study investigated the relationship between the
SSVEP-based BCI performance and the resting alpha activity
in a total of 33 subjects. As shown in figure 3(b), it was
observed that most subjects with relatively low relative IAB
amplitude (<1.0) obtained relatively high classification acc-
uracy (>80%). What’s more, we found that the alpha ampl-
itude at Oz in the eyes-open resting baseline had significant
negative correlations with the SSVEP SNR and the BCI
classification accuracy under 10 stimulus frequencies between
7 Hz and 15 Hz, suggesting that the relative IAB amplitude at
Oz in the resting state could be a potential predictor of the
SSVEP-based BCI performance. A similar result was reported
by Zhang et al (2013), where the mean relative power spectral
densities in the upper alpha band (9–12.5 Hz) was found
correlated close-to-significance for the Oz (r = −0.535,
p = 0.073), and significantly for the mean across the nine
electrodes from parietal to occipital regions (r = −0.638,
p = 0.026) with the classification accuracy under the four
stimulus frequencies (7.5, 10, 12 and 15 Hz) in the eyes-
closed condition. Furthermore, our findings are in line with a
recent study from Won et al (2016) who reported a negative
correlation between the occipital resting alpha power and the
classification accuracy in the low stimulus frequency range
(6–14.9 Hz). Interestingly, in their work such a correlation
could not be found in high stimulus frequency (26–34.7 Hz).
Therefore, the relationship between the EEG power spectrum
and the SSVEP-based BCI performance may depend on the
stimulus frequency.

The precise neurobiological mechanism of the relations
remains unclear, yet previous studies provide some interesting
hints. It was reported that prestimulus alpha activity is
inversely related to visual perception performance, such as
attentional blink (AB), visual attention, visual discrimination,
and visual detection performance (Ergenoglu et al 2004, Thut
et al 2006, van Dijk et al 2008, Hanslmayr et al 2011,
Macdonald et al 2011). Moreover, the resting alpha activity
was found negatively correlated with the accuracy and posi-
tively correlated with the AB magnitude in AB task
(MacLean et al 2012). These findings implied that the pres-
timulus alpha activity in the occipito-parietal cortex co-varies
with the excitability of the visual cortex (Klimesch et al 2007,
Romei et al 2008, 2010) and the alpha reductions may
accompany an increase in vigilance, which increases their
attention-demanding cognitive processes (MacLean
et al 2012). The speculation was that the prestimulus and the
resting alpha activity in the occipito-parietal cortex were
associated with the performance for visual tasks, like the tasks
during the SSVEP-based BCI tests. Besides, the negative
correlation between the prestimulus alpha activity and VEP
(or EP) was found in Brandt and Jansen (1991), Başar et al
(1998), and Barry et al (2000), which may imply that the
SSVEP amplitude is negatively correlated with the presti-
mulus alpha activity since there is a strong association
between SSVEP and VEP (Vialatte et al 2010). However,
Becker et al (2008) found that the relationship between
prestimulus alpha and VEPs is not straight forward. One

possibility is that the VEP signal parameters could be
modulated by different types of visual tasks. This issue is still
in debate and requires more investigations in the future.

The subjects with low BCI classification accuracy
(<80%) were selected and performed NFT for decreasing
their relative IAB amplitude at Oz. As expected, it was found
that the subjects were able to decrease their alpha amplitude
during training. This alpha decrease is consistent with Ros
et al (2013) in which the fixed alpha band (8–12 Hz) was
trained to decrease by a 30 min training session. During the
NFT, the subjects focused their attention on the feedback
display while applying mental strategy to achieve Goal_1 and
Goal_2. Thus, their high attention and active mental activity
may be responsible to the alpha decrease since this has been
proven to be linked to increased attention (Thut et al 2006)
and active cognitive processing (Klimesch et al 2007).
Moreover, the mechanism of NFT is operant conditioning in
the learning theory of behaviorism. When the produced
changes in the EEG meet the reward condition (i.e. the rela-
tive IAB amplitude stays below the predefined threshold), a
reward stimulus is presented immediately following the
responses (e.g. the sphere color changes and its size increases)
(Sterman and Egner 2006). Under this operant learning
paradigm, the subject would learn how to decrease their alpha
amplitude by NFT.

On the contrary, the resting relative IAB amplitude
showed no significant change after the NFT, in line with
previous studies which demonstrated that the resting alpha
went back to the initial level after a 30 min session of alpha
down-regulating NFT (Ros et al 2013, Kluetsch et al 2014).
Nonetheless, the NFT group gained a significant performance
enhancement in both SSVEP SNR and classification accuracy
which was not observed in the control group. Even though the
resting alpha amplitude showed a rebound after training, the
increased corticospinal excitability and decreased intracortical
inhibition (Ros et al 2010), the increased calmness and net-
work connectivity (Ros et al 2013, Kluetsch et al 2014) as
well as the increased metabolic rate associated with alpha
decrease in the NFT (Klimesch et al 2007) may result in the
performance enhancement. More interestingly, we found that
the improvement in the SSVEP SNR and the BCI classifi-
cation accuracy were associated with the lower IAB decrease
from Session 1 to Session 10, which further proved that the
improvement in the SSVEP-based BCI performance resulted
from the NFT.

In the literature, various methods from different aspects
have been proposed to improve the SSVEP-based BCI per-
formance, such as visual stimulation optimization (Marteka
and Byczuk 2006, Lee et al 2011), signal processing
(Bashashati et al 2007, Liu et al 2014), and adaptation and
customization of the BCI systems (Volosyak 2011, Zhang
et al 2014, da Cruz et al 2015). As the NFT in this study was
proposed from a different viewpoint aiming to strengthening
the subject’s EEG patterns, a combination of the proposed
NFT with any of the above methods should be able to provide
more efficient SSVEP-based BCIs.

It should be noted that, in order to evaluate the NFT
effects more precisely, only one stimulus was presented per
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time in the BCI test, to reduce the interference due to other
factors such as attention shift among multiple stimulus tar-
gets, especially for the naive subjects. On the other hand,
according to Ng et al (2011), the SSVEP response would not
be much affected by other flashing targets if the inter-stimulus
distance is larger than 6 cm. Therefore, the proposed NFT
should remain effective when multiple stimulus targets are
presented in a typical SSVEP-based BCI. Furthermore, like in
most existing research in SSVEP-based BCIs, this study
adopted ten stimuli frequencies between 7 and 15 Hz because
the amplitude of the SSVEP signal evoked by the visual sti-
mulus flashing at low frequency (6–15 Hz) has been known
higher than that of the medium frequency (15–40 Hz) as well
as the high frequency (40–60 Hz) and in consequence nor-
mally better BCI system performance (Gao et al 2003, Yin
et al 2013). It is not clear whether and how effectively the
proposed alpha down-regulating NFT could improve the
SSVEP-based BCI performance with higher stimulus fre-
quencies, which deserves further investigation.

5. Conclusion

This study showed that the resting relative IAB amplitude has
a negative correlation with the SSVEP-based BCI perfor-
mance and the proposed alpha down-regulating NFT could
lead to improvement of SSVEP signal SNR and BCI classi-
fication accuracy. Our results suggest a promising approach to
further improving SSVEP-based BCI performance additional
to the current efforts on the system design and optimization.
The resting relative IAB amplitude has the potential to be a
simple predictor of the SSVEP-based BCI performance.
These findings could be helpful to the SSVEP related studies
and would contribute to more effective SSVEP-based BCI
applications.
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